Asymptotic Analysis on Spatial Coupling Coding for Two-Way Relay Channels

نویسندگان

  • Satoshi Takabe
  • Yuta Ishimatsu
  • Tadashi Wadayama
  • Masahito Hayashi
چکیده

Compute-and-forward relaying is effective to increase bandwidth efficiency of wireless two-way relay channels. In a compute-and-forward scheme, a relay tries to decode a linear combination composed of transmitted messages from other terminals or relays. Design for error correcting codes and its decoding algorithms suitable for compute-and-forward relaying schemes are still important issue to be studied. In this paper, we will present an asymptotic performance analysis on LDPC codes over two-way relay channels based on density evolution (DE). Because of the asymmetric nature of the channel, we employ the population dynamics DE combined with DE formulas for asymmetric channels to obtain BP thresholds. In addition, we also evaluate the asymptotic performance of spatially coupled LDPC codes for two-way relay channels. The results indicate that the spatial coupling codes yield improvements in the BP threshold compared with corresponding uncoupled codes for two-way relay channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel

In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...

متن کامل

On the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels

In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR) nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR nodes transmit their mes...

متن کامل

Asymptotic analysis of multi-branch two-way amplify-and-forward relaying in Nakagami-m fading with arbitrary fading parameter

Two-way relay networks have received lots of attention, thanks to its ability to overcome the loss in the spectral efficiency due to half-duplex transmission. Asymptotic performance analysis can provide valuable insights into practical system designs. However, this is a gap in two-way relay network. In this paper, the asymptotic performance is studied for multi-branch dual-hop two-way amplify-a...

متن کامل

Technical Report on "Capacity Region Bounds and Resource Allocation for Two-Way OFDM Relay Channels"

In this paper, we consider two-way orthogonal frequency division multiplexing (OFDM) relay channels, where the direct link between the two terminal nodes is too weak to be used for data transmission. The widely known per-subcarrier decode-and-forward (DF) relay strategy, treats each subcarrier as a separate channel, and performs independent channel coding over each subcarrier. We show that this...

متن کامل

Power Allocation Strategies in Block-Fading Two-Way Relay Networks

This paper aims at investigating the superiority of power allocation strategies, based on calculus of variations in a point-to-point two-way relay-assisted channel incorporating the amplify and forward strategy. Single and multilayer coding strategies for two cases of having and not having the channel state information (CSI) at the transmitters are studied, respectively. Using the notion of cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06328  شماره 

صفحات  -

تاریخ انتشار 2018